A Family of Iterative Methods for Simultaneous Computing of All Zeros of Algebraic Equation
نویسندگان
چکیده
This study deals with a family of multi-point iterative methods of arbitrary order of convergence for simultaneous computing of all roots of an algebraic equation. These methods are analogues of the well known method for computing of a single root of a nonlinear equation. Some known methods for simultaneous finding of all roots of algebraic equations are special cases of the family considered. Numerical examples are provided.
منابع مشابه
A note on some improvements of the simultaneous methods for determination of polynomial zeros
Absrrucr: Applying Gauss-Seidel approach to the improvements of two simultaneous methods for finding polynomial zeros, presented in [9], two iterative methods with faster convergence are obtained. The lower bounds of the R-order of convergence for the accelerated methods are given. The improved methods and their accelerated modifications arc discussed in view of the convergence order and the nu...
متن کاملThe spectral iterative method for Solving Fractional-Order Logistic Equation
In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...
متن کاملA Third Order Iterative Method for Finding Zeros of Nonlinear Equations
In this paper, we present a new modification of Newton's method for finding a simple root of a nonlinear equation. It has been proved that the new method converges cubically.
متن کاملWeights in block iterative methods
In this paper we introduce a sequential block iterative method and its simultaneous version with op-timal combination of weights (instead of convex combination) for solving convex feasibility problems.When the intersection of the given family of convex sets is nonempty, it is shown that any sequencegenerated by the given algorithms converges to a feasible point. Additionally for linear feasibil...
متن کاملConvergence theorems of iterative approximation for finding zeros of accretive operator and fixed points problems
In this paper we propose and studied a new composite iterative scheme with certain control con-ditions for viscosity approximation for a zero of accretive operator and xed points problems in areflexive Banach space with weakly continuous duality mapping. Strong convergence of the sequencefxng dened by the new introduced iterative sequence is proved. The main results improve andcomplement the co...
متن کامل